
 EECE 320 – Digital Systems Design Fall 2004

 Midterm Solution

Problem 1: [20 points]

1. very high speed integrated circuit hardware description language
2. true
3. true
4. XY + XZ’ = XY + X’Z + YZ
5. 1101001 (maintain same number of bits)
6. 3122.22
7. false
8. 2pX + 2p -1
9. false
10. true
11. false
12. 215
13. entity decoder is

port (a: in std_logic_vector(1 downto 0);
b: out std_logic_vector (3 downto 0)

);
 end decoder;

14. architecture prime4_arch of prime is
begin
with N select Y <=
‘1’ when “0001”| “0010”| “0011”| “0101”| “0111”| “1011”| “1101”,
‘0’ when others;
end prime4_arch;

15. architecture V2to4dec_b of V2to4dec is
signal Y_s: in std_logic_vector (0 to 3);

 begin
 process (IN, EN)
 begin
 case IN is
 when “00” => Y_s <= “1000”;
 when “01” => Y_s <= “0100”;
 when “10” => Y_s <= “0010”;
 when “11” => Y_s <= “0001”;
 when others => Y_s <= “0000”;
 end case;

 if EN = ‘1’ then Y <= Y_s;
 else Y<=”000”;

 end if;
 end process;
 end V2to4dec_b;

16. FD = (X’ + Y’ + Z)(X’ + Y + Z)(X + Y’ + Z)(X + Y + Z)
 = ∏(0,2,4,6) = F
 (it turns out that F is self dual)
17. possibility of a circuit producing a 0 glitch when the output is expected to remain

at 1
18. 1
19. minimal sum is a sum of prime implicants
20. adjacent number differ by exactly one bit

Problem 2: [8 points]

F = ∑A,B,C,D(1,3,4,5,10,11,12,13,14,15)

K-map:

 AB
CD

00 01 11 10

00 1 1
01 1 1 1
11 1 1 1
10 1 1

a) prime implicants: BC’, AC, B’CD, A’C’D, A’B’D, AB
b) essential prime implicants: BC’, AC
c) minimum SOP expression: BC’ + AC + A’B’D
d) minimum POS expression: (A + B’ + C’)(A’ + B + C)(A + B + D)

Problem 3: [6 points]

F = (X1 + X2’)(X2 + X3)

Gate implementation:
X1

4

5

2

X2 3 2

4

5

2

X3

F

4

5

2

a) static-0 Hazard
b) 000  010
c) Add an extra OR gate with inputs X1 and X3

Problem 4: [10 points]

a) We want to implement F = A XOR B using minimum NAND gates:

1

2

3

Y

1

2

3

X

F

1

2

3

1

2

3

b) Recall that for a 1-bit adder:

S = A XOR B XOR Cin
Cout = ACin + BCin + AB

 F1 = XY F2 = X + Y F3 = X XOR Y

 F4 = X XNOR Y F5 = X’ F6 = X XNOR Y XNOR Z

Problem 5: [10 points]

F(a,b,c,d,e,f,g,h) = a’b’c’d + ag’h + ag + a’b’ce + a’bf ’
So F = aF(a = 1) + a’F(a = 0) by Shannon’s theorem

F (a = 1) = g’h + g = G
F (a = 0) = b’c’d + b’ce + bf’ = H

G = g(1) + g’h: implemented using a mux having inputs 1 and h and select signal g

H(b,c,d,e,f) = bH(b = 1) + b’H(b = 0): mux with inputs H(b = 1) and H(b = 0) and select
signal b
H(b = 1) = f’ = f(0) + f’(1): mux with inputs 0 and 1 and select signal f
H(b = 0) = c’d + ce: mux with inputs d and e and select signal c

FA

FA

FA 1

F4

Y X

1

 F5

Y

Z

F6

X 0 X

FA

FA

FA 0

F1

Y X

1 F2

Y

0

F3

X Y X

Problem 6: [10 points]

Let D = D3D2D1D0
We get the following truth table for the 4-bit majority function F:

D2 D1 D0 F
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 D3
1 0 0 0
1 0 1 D3
1 1 0 D3
1 1 1 1

This table can be further developed as follows:

D2 D1 F
0 0 0
0 1 D2D3
1 0 D2D3
1 1 D2 + D3

0

1

d

e

c

0

1

b

c

0

1

1

0

f

0

1

h

1

g

0

1

a

H

G
F

We obtain the following logic circuit:

Problem 7: [8 points]

a)

b)

Problem 8: [10 points]

LUT
d = 0
e = 0

a
b

LUT
d = 0
e = 1

a
b

LUT
d = 1
e = 0

a
b

LUT
d = 1
e = 1

a
b

 c

 c

c

c

00

01
 MUX
10

11

d e

G

The ABS block is designed as follows:

Alternatively, the mux can be placed outside the block.
Set the carry input of the rightmost block to 0.
Problem 9: [8 points]

Let L(W,X,Y,Z) = WY + W’YZ’ + WXZ + W’XY’
 R(W,X,Y,Z) = WY + W’XZ’ + X’YZ’ + XY’Z

L(W = 0) = YZ’ + XY’
L(W = 1) = Y + XZ

R(W = 0) = XZ’ + X’YZ’ + XY’Z
 = (X + X’Y)Z’ + XY’Z = XZ’ + YZ’ + XY’Z
 = X(Z’ + Y’Z) + YZ’ = XZ’ + XY’ + YZ’ = XY’ + YZ’ (By consensus)
 = L(W = 0)

R(W = 1) = Y + X’YZ’ + XY’Z = Y + XY’Z = Y + XZ = L(W = 1)

Therefore L = R

Problem 10: [16 points]

We first build the 8-to-3 encoder from 4-to-2 encoders, and 3-to-8 decoders from 2-to-4
decoders.

8-3 encoder:

3-8 decoder:

To put it all together: the input A7A6…A0 is connected to a first 8-to-3 encoder. The
output signals of this encoder, B2B1B0 identifies the inputs with highest priority
respectively. E0B is asserted if a highest priority input is detected. We connect B2B1B0
to the input of a 3-to-8 decoder. The output signals of this decoder are active-low and
each one is ANDed with the respective bit from the original input A. The result of the
AND gates is inputted into a second 8-to-3 priority encoder with output signals C2C1C0,
which identifies the inputs with second highest priority respectively, and EOC which is
asserted if a second highest priority input is detected.

The encoders and the decoder share the same enable signal EN.

Problem 11: [16 points]

Entity comp1 is
port (A, B: in std_logic;
 EQi: in std_logic;
 EQo : out std_logic);
End comp1;

Architecture comp1 of comp1 is
Signal X, XN: std_logic;
Begin
 X<= A XOR B;
 XN <= NOT X;
 EQo <= EQi AND XN;
End comp1;

Entity comp8 is
Port (A,B: in std_logic_vector(7 downto 0);
 EQi: in std_logic;
 EQo: out std_logic);
End comp8;

Architecture comp8 of comp8 is
Signal EQ: std_logic_vector(8 downto 0);
Component comp1
port (A, B: in std_logic;
 EQi: in std_logic;
 EQo : out std_logic);
End component;

Begin
 For i in 0 to 7 generate
 U1: comp port map (A(i), B(i), EQ(i), EQ(i + 1));
 End generate;
EQ(0) <= EQi;
EQo <= EQ(8);
End comp8;

Testbench:

Plug in the following values:

A<=0x”23”; B<=0x”32”; wait for 10 ns;
A<=0x”34”; B<=0x”34”; wait for 10 ns;
A<=0x”FF”; B<=0x”00”; wait for 10 ns;

