EECE 320 - Digital Systems Design

Fall 2004

Midterm Solution

Problem 1: [20 points]

1. very high speed integrated circuit hardware description language
2. true
3. true
4. $X Y+X Z Z^{\prime}=X Y+X^{\prime} Z+Y Z$
5. 1101001 (maintain same number of bits)
6. 3122.22
7. false
8. $2^{p} \mathrm{X}+2^{\mathrm{p}}-1$
9. false
10. true
11. false
12. 2^{15}
13. entity decoder is
port (a: in std_logic_vector(1 downto 0);
b: out std_logic_vector (3 downto 0)
);
end decoder;
14. architecture prime4_arch of prime is
begin
with N select $\mathrm{Y}<=$
'1' when "0001"| "0010"| "0011"| "0101"| "0111"| "1011"| "1101",
' 0 ' when others;
end prime4_arch;
15. architecture V2to4dec_b of V2to4dec is signal Y_s: in std_logic_vector (0 to 3);
begin
process (IN, EN)
begin
case IN is
when " 00 " => Y s $<=$ " 1000 ";
when " 01 " => Y s $<=$ " 0100 ";
when " 10 " " $=>$ Y_s $<=$ " 0010 ";
when " 11 " $=>\mathrm{Y}_{-} \mathrm{s}<=$ "0001";
when others $=>Y_{-}$s $<=$" 0000 ";
end case;
if $\mathrm{EN}=$ ' 1 ' then $\mathrm{Y}<=\mathrm{Y}$ _s;
else $\mathrm{Y}<=$ " 000 ";
end if;
end process;
end V2to4dec_b;
16. $\mathrm{F}^{\mathrm{D}}=\left(\mathrm{X}^{\prime}+\mathrm{Y}^{\prime}+\mathrm{Z}\right)\left(\mathrm{X}^{\prime}+\mathrm{Y}+\mathrm{Z}\right)\left(\mathrm{X}+\mathrm{Y}^{\prime}+\mathrm{Z}\right)(\mathrm{X}+\mathrm{Y}+\mathrm{Z})$

$$
=\Pi(0,2,4,6)=F
$$

(it turns out that F is self dual)
17. possibility of a circuit producing a 0 glitch when the output is expected to remain at 1
18. 1
19. minimal sum is a sum of prime implicants
20. adjacent number differ by exactly one bit

Problem 2: [8 points]

$\mathrm{F}=\sum_{\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}}(1,3,4,5,10,11,12,13,14,15)$
K-map:

$\mathbf{C D}$	$\mathbf{A B}$	01	11	10
00		1	1	
01	1	1	1	
11	1		1	1
10			1	1

a) prime implicants: $\mathrm{BC}^{\prime}, \mathrm{AC}, \mathrm{B}^{\prime} \mathrm{CD}, \mathrm{A}^{\prime} \mathrm{C}^{\prime} \mathrm{D}, \mathrm{A}^{\prime} \mathrm{B}^{\prime} \mathrm{D}, \mathrm{AB}$
b) essential prime implicants: $\mathrm{BC}^{\prime}, \mathrm{AC}$
c) minimum SOP expression: $\mathrm{BC}^{\prime}+\mathrm{AC}+\mathrm{A}^{\prime} \mathrm{B}^{\prime} \mathrm{D}$
d) minimum POS expression: $\left(\mathrm{A}+\mathrm{B}^{\prime}+\mathrm{C}^{\prime}\right)\left(\mathrm{A}^{\prime}+\mathrm{B}+\mathrm{C}\right)(\mathrm{A}+\mathrm{B}+\mathrm{D})$

Problem 3: [6 points]

$\mathrm{F}=\left(\mathrm{X}_{1}+\mathrm{X}_{2}{ }^{\prime}\right)\left(\mathrm{X}_{2}+\mathrm{X}_{3}\right)$

Gate implementation:

a) static-0 Hazard
b) $000 \rightarrow 010$
c) Add an extra OR gate with inputs X_{1} and X_{3}

Problem 4: [10 points]

a) We want to implement $\mathrm{F}=\mathrm{A}$ XOR B using minimum NAND gates:

b) Recall that for a 1-bit adder:
$\mathrm{S}=\mathrm{A}$ XOR B XOR Cin
Cout $=\mathrm{ACin}+\mathrm{BCin}+\mathrm{AB}$

Problem 5: [10 points]

$F(a, b, c, d, e, f, g, h)=a^{\prime} b^{\prime} c^{\prime} d+a g^{\prime} h+a g+a^{\prime} b^{\prime} c e+a^{\prime} b f$,
So $\mathrm{F}=\mathrm{aF}(\mathrm{a}=1)+\mathrm{a}^{\prime} \mathrm{F}(\mathrm{a}=0)$ by Shannon's theorem
$\mathrm{F}(\mathrm{a}=1)=\mathrm{g} \mathrm{h}+\mathrm{g}=\mathrm{G}$
$\mathrm{F}(\mathrm{a}=0)=\mathrm{b}^{\prime} \mathrm{c}^{\prime} \mathrm{d}+\mathrm{b}^{\prime} \mathrm{ce}+\mathrm{bf}{ }^{\prime}=\mathrm{H}$
$\mathrm{G}=\mathrm{g}(1)+\mathrm{g} \mathrm{h}$: implemented using a mux having inputs 1 and h and select signal g
$H(b, c, d, e, f)=b H(b=1)+b^{\prime} H(b=0)$: mux with inputs $H(b=1)$ and $H(b=0)$ and select signal b
$H(b=1)=f^{\prime}=f(0)+f^{\prime}(1)$: mux with inputs 0 and 1 and select signal f
$H(b=0)=c ' d+c e:$ mux with inputs d and e and select signal c

Problem 6: [10 points]

Let $\mathrm{D}=\mathrm{D}_{3} \mathrm{D}_{2} \mathrm{D}_{1} \mathrm{D}_{0}$
We get the following truth table for the 4-bit majority function F :

$\mathbf{D}_{\mathbf{2}}$	$\mathbf{D}_{\mathbf{1}}$	$\mathbf{D}_{\mathbf{0}}$	\mathbf{F}
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	D_{3}
1	0	0	0
1	0	1	D_{3}
1	1	0	D_{3}
1	1	1	1

This table can be further developed as follows:

$\mathbf{D}_{\mathbf{2}}$	$\mathbf{D}_{\mathbf{1}}$	\mathbf{F}
0	0	0
0	1	$\mathrm{D}_{2} \mathrm{D}_{3}$
1	0	$\mathrm{D}_{2} \mathrm{D}_{3}$
1	1	$\mathrm{D}_{2}+\mathrm{D}_{3}$

We obtain the following logic circuit:

Problem 7: [8 points]

a)

b)

Problem 8: [10 points]

The ABS block is designed as follows:

Alternatively, the mux can be placed outside the block.
Set the carry input of the rightmost block to 0 .

Problem 9: [8 points]

$$
\begin{aligned}
& \text { Let } \mathrm{L}(\mathrm{~W}, \mathrm{X}, \mathrm{Y}, \mathrm{Z})=\mathrm{WY}+\mathrm{W}^{\prime} \mathrm{YZ}^{\prime}+\mathrm{WXZ}+\mathrm{W}^{\prime} \mathrm{XY}{ }^{\prime} \\
& R(W, X, Y, Z)=W Y+W^{\prime} X Z Z^{\prime}+X^{\prime} Y Z{ }^{\prime}+X Y^{\prime} Z \\
& \mathrm{~L}(\mathrm{~W}=0)=\mathrm{YZ}^{\prime}+\mathrm{XY}{ }^{\prime} \\
& \mathrm{L}(\mathrm{~W}=1)=\mathrm{Y}+\mathrm{XZ} \\
& R(W=0)=X Z Z^{\prime}+X^{\prime} Y Z^{\prime}+X Y^{\prime} Z \\
& =\left(X+X^{\prime} Y\right) Z^{\prime}+X Y^{\prime} Z=X Z^{\prime}+Y Z{ }^{\prime}+X Y^{\prime} Z \\
& =X\left(Z^{\prime}+Y^{\prime} Z\right)+Y Z^{\prime}=X Z^{\prime}+X Y^{\prime}+Y Z^{\prime}=X Y^{\prime}+Y Z^{\prime}(\text { By consensus }) \\
& =\mathrm{L}(\mathrm{~W}=0) \\
& R(W=1)=Y+X^{\prime} Y^{\prime}{ }^{\prime}+X Y^{\prime} Z=Y+X Y^{\prime} Z=Y+X Z=L(W=1)
\end{aligned}
$$

Therefore $\mathrm{L}=\mathrm{R}$

Problem 10: [16 points]

We first build the 8-to-3 encoder from 4-to-2 encoders, and 3-to-8 decoders from 2-to-4 decoders.

8-3 encoder:

3-8 decoder:

To put it all together: the input A7A6...A0 is connected to a first 8-to-3 encoder. The output signals of this encoder, B2B1B0 identifies the inputs with highest priority respectively. E0B is asserted if a highest priority input is detected. We connect B2B1B0 to the input of a 3-to- 8 decoder. The output signals of this decoder are active-low and each one is ANDed with the respective bit from the original input A. The result of the AND gates is inputted into a second 8 -to- 3 priority encoder with output signals C2C1C0, which identifies the inputs with second highest priority respectively, and EOC which is asserted if a second highest priority input is detected.

The encoders and the decoder share the same enable signal EN.

Problem 11: [16 points]

Entity comp1 is
port (A, B: in std_logic;
EQi: in std_logic;
EQo : out std_logic);
End comp1;
Architecture comp1 of comp1 is Signal X, XN: std_logic;
Begin

$$
\begin{aligned}
& \mathrm{X}<=\text { A XOR B; } \\
& \mathrm{XN}<=\text { NOT X; } \\
& \text { EQo }<=\text { EQi AND XN; }
\end{aligned}
$$

End comp1;
Entity comp8 is
Port (A,B: in std_logic_vector(7 downto 0);
EQi: in std_logic;
EQo: out std_logic);
End comp8;
Architecture comp8 of comp8 is
Signal EQ: std_logic_vector(8 downto 0);
Component compl
port (A, B: in std_logic;
EQi: in std_logic;
EQo : out std_logic);
End component;
Begin
For i in 0 to 7 generate
U1: comp port map (A(i), B(i), EQ(i), EQ(i + 1));
End generate;
$\mathrm{EQ}(0)<=\mathrm{EQi}$;
EQo $<=\mathrm{EQ}(8)$;
End comp8;
Testbench:

Plug in the following values:
$\mathrm{A}<=0 \mathrm{x} " 23 " ; \mathrm{B}<=0 \mathrm{x} " 32$ "; wait for 10 ns ;
$A<=0 x$ " 34 "; $B<=0 x$ " 34 "; wait for 10 ns ;
$\mathrm{A}<=0 \mathrm{x}{ }^{\prime} \mathrm{FF}^{\prime}$ "; $\mathrm{B}<=0 \mathrm{x}$ " 00 "; wait for 10 ns ;

